BIOFLEX[®] ULTRA PTFE Hose for biotechnology and pharmaceutical fluid transfer Very flexible, yet kink resistant - smooth bore for uninterrupted fluid flow and ease of cleaning ### **BIOFLEX ULTRA HOSE SPECIFICATIONS** #### **HOSE BORE SIZE RANGE-** 3/8" (9.5MM) UP TO 3" (80MM) ### **HOSE LENGTHS -** UP TO 100 FEET (30 METERS) UP TO 2", 60 FEET (18 METERS) UP TO 2 $^1\!/_2$ ", 50 FEET (15 METERS) UP TO 3" # **TEMPERATURE LIMITS -** SS Braided Hose -100°F (-73°C) TO +500°F (+260°C) EPDM Rubber Covered Hose -40°F (-40°C) TO +302°F (+150°C) Silicone Rubber Covered Hose -100°F (-73°C) TO +400°F (+204°C) Polypropylene Braided Hose -22°F (-30°C) TO +212°F (+100°C) # **WORKING PRESSURE RATINGS -** FOR SS BRAIDED AND RUBBER COVERED HOSE 1160 PSI (80 BAR) FOR $^3/\mathrm{s}''$ BORE HOSE, UP TO 218 PSI (15 BAR) FOR 3" BORE HOSE # **VACUUM LIMITATIONS -** USABLE AT VACUUM TO -0.9BAR FOR ALL SIZES UP TO 392°F (200°C). 212°F (+100°C) FOR TUBE ONLY GRADE (TO) **END FITTING OPTIONS** *Non-Lined, or PTFE Lined and Flared design for:* SANITARY TRICLAMP, HYGIENIC SMS, DIN 11851, I-LINE, ANSI 150, DIN AND JIS SWIVEL FLANGE, CAM & GROOVE, AND DIP PIPES. LASER ETCHED FERRULE FOR ULTIMATE TRACEABILITY **END FITTING OPTIONS** *Non-Lined design for:*BSP, NPT AND JIC THREADED FITTINGS, AND RJT FITTINGS #### **BRAID DESIGN OPTIONS -** STAINLESS STEEL WIRE (GRADE SS) OR POLYPROPYLENE YARN BRAID (GRADE PB) ### **EXTERNAL COVER OPTIONS -** BLUE (GRADE RC) OR BLACK (GRADE BK) EPDM RUBBER COVER, OR CLEAR SILICONE RUBBER COVER (GRADE SI) ## **APPROVALS** - USP CLASS VI, ISO 9001: 2015, EN16643, ISO 14001: 2015, OHSAS 18001:2007, IATF 16949: 2016 FDA (MATERIALS), 3-A 62-02, 3.1 TRACEABILITY, ATEX, (EU) 10/2011, GRADE BK FIREPROOF TO BS5173 SECTION 103.13 PART 6.2 & 6.3 FOR THE FULL BIOFLEX ULTRA HOSE BROCHURE PLEASE VISIT WWW.AFLEX-HOSE.COM | Nominal Hose
Bore Size | | Actual Bore Size | | Bioflex Ultra Grade
(Braid & Cover) | Helical Wire | **Maximum Working
Pressure of Hose | | Burst Pressure | | Minimum Bend Radius | | |---------------------------------|-----|----------------------------------|------------------------------|--|------------------|---------------------------------------|---------------------------|-------------------------|-----------------------------|--|--------------------------| | in | mm | in | mm | | He | Bar | psi | Bar | psi | in | mm | | 3/8 | 9.5 | 0.382
0.382
0.382 | 9.7
9.7
9.7 | TO
SS
RC/BK/SI | -
-
- | 5
80
80 | 72
1160
1160 | 20
500
500 | 290
7200
7200 | 1 ³ / ₈ ³ / ₄ ³ / ₄ | 35
19
19 | | 1/2 | 15 | 0.516
0.516
0.516
0.516 | 13.1
13.1
13.1
13.1 | TO
SS
PB
RC/BK/SI | √
√
√
√ | 5
70
35
70 | 72
1015
500
1015 | 20
400
140
400 | 290
5800
2000
5800 | $2^{3}/_{8}$ $1^{1}/_{2}$ $1^{1}/_{2}$ $1^{1}/_{2}$ | 60
38
38
38 | | 5/8 | 16 | 0.638
0.638
0.638
0.638 | 16.2
16.2
16.2
16.2 | TO
SS
PB
RC/BK/SI | √
√
√
√ | 5
65
33
65 | 72
940
480
940 | 20
380
130
380 | 290
5500
1900
5500 | $ \begin{array}{c} 2^{1}/2 \\ 1^{3}/4 \\ 1^{3}/4 \\ 1^{3}/4 \end{array} $ | 64
45
45
45 | | 3/4 | 20 | 0.760
0.760
0.760
0.760 | 19.3
19.3
19.3
19.3 | TO
SS
PB
RC/BK/SI | √
√
√
√ | 5
60
30
60 | 72
870
440
870 | 20
300
120
300 | 290
4350
1750
4350 | 3
2
2
2 | 75
50
50
50 | | * 7/8 | 22 | 0.870
0.870
0.870
0.870 | 22.1
22.1
22.1
22.1 | TO
SS
PB
RC/BK/SI | √
√
√
√ | 4
55
27.5
55 | 60
800
400
800 | 16
220
110
220 | 230
3200
1600
3200 | 3 ¹ / ₂
2 ¹ / ₈
2 ¹ / ₈
2 ¹ / ₈ | 90
55
55
55 | | 1 | 25 | 1.012
1.012
1.012
1.012 | 25.7
25.7
25.7
25.7 | TO
SS
PB
RC/BK/SI | √
√
√
√ | 4
50
25
50 | 60
720
360
720 | 16
200
100
200 | 230
2900
1450
2900 | $4^{3}/4$ $2^{3}/4$ $2^{3}/4$ $2^{3}/4$ | 110
70
70
70 | | 1 ¹ / ₄ | 32 | 1.268
1.268
1.268
1.268 | 32.2
32.2
32.2
32.2 | TO
SS
PB
RC/BK/SI | √
√
√ | 3
45
23
45 | 43
650
330
650 | 12
180
90
180 | 175
2600
1300
2600 | 5 ¹ / ₂
4
4
4 | 140
100
100
100 | | * 1 ³ / ₈ | 35 | 1.370
1.370
1.370
1.370 | 34.8
34.8
34.8
34.8 | TO
SS
PB
RC/BK/SI | √ √ √ √ | 2
40
20
40 | 29
580
290
580 | 8
160
80
160 | 116
2320
1160
2320 | 6 ¹ / ₂ 4 4 4 | 160
100
100
100 | | 11/2 | 40 | 1.516
1.516
1.516
1.516 | 38.5
38.5
38.5
38.5 | TO
SS
PB
RC/BK/SI | √
√
√ | 2
40
20
40 | 29
580
290
580 | 8
160
80
160 | 116
2320
1160
2320 | 7 5 ¹ / ₂ 5 ¹ / ₂ 5 ¹ / ₂ | 180
140
140
140 | | * 17/8 | 48 | 1.866
1.866
1.866
1.866 | 47.4
47.4
47.4
47.4 | TO
SS
PB
RC/BK/SI | √ √ √ √ | 2
35
18
35 | 29
500
250
500 | 8
140
72
140 | 116
2000
1040
2000 | 11
6 ⁵ /8
6 ⁵ /8
6 ⁵ /8 | 280
170
170
170 | | 2 | 50 | 2.012
2.012
2.012
2.012 | 51.1
51.1
51.1
51.1 | TO
SS
PB
RC/BK/SI | √
√
√
√ | 2
30
15
30 | 29
430
215
430 | 8
120
60
120 | 116
1750
870
1750 | 12
8
8
8 | 300
200
200
200 | | 2 ¹ / ₂ | 65 | 2.508
2.508
2.508 | 63.7
63.7
63.7 | SS
PB
RC/BK/SI | √
√
√ | 20
12
20 | 290
174
290 | 80
48
80 | 1160
696
1160 | 11 ⁷ / ₈
11 ⁷ / ₈
11 ⁷ / ₈ | 300
300
300 | | 3 | 80 | 3.024
3.024
3.024 | 76.8
76.8
76.8 | SS
PB
RC/BK/SI | √
√
√ | 15
10
15 | 218
145
218 | 60
40
60 | 870
580
870 | 13 ³ / ₄
13 ³ / ₄
13 ³ / ₄ | 350
350
350 | *The $\frac{7}{8}$ ", $\frac{13}{8}$ " and $\frac{17}{8}$ " hose sizes are only suitable for use with PTFE lined sanitary clamp (or triclover) end fittings and PTFE lined I-Line end fittings. # BFXU - USA/10.09.18 Rev 3 A member of Watson-Marlow Fluid Technology Group. A Spirax-Sarco Engineering plc company # **AFLEX HOSE USA LLC** 32 Appletree Lane Pipersville, PA 18947 Tel: 215 - 766 - 1455 Fax: 215 - 766 - 1688 ^{**} The Maximum Working Pressure of a hose assembly is limited to the lowest of the MWP's of either of the two end fittings, or of the hose itself as listed above. The MWP of the hose reduces as the operating temperature increases, consult Aflex Hose for guidance. Note: 2¹/2″ & 3″ TO (Tube only) cannot be ordered as an assembly.